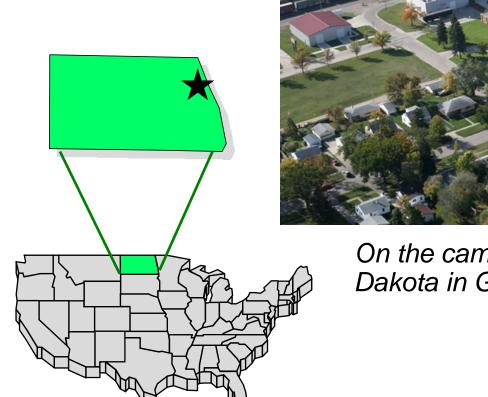

Energy & Environmental Research Center University of North Dakota

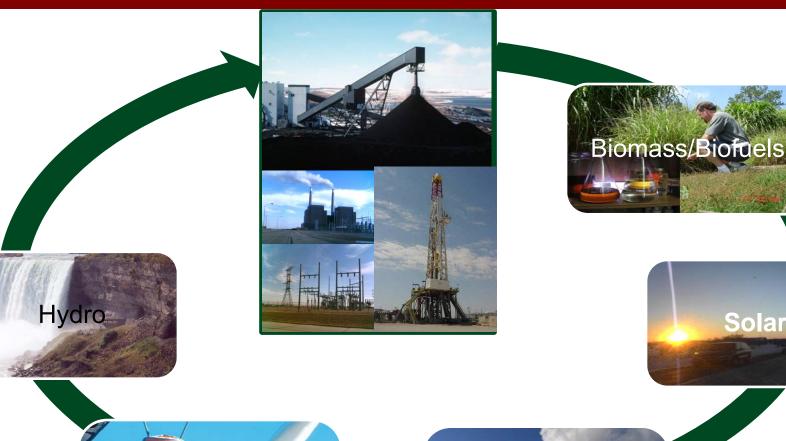
et-Zero Energy - Two-Day Workshop Colorado Springs, Colorado Chris J. Zygarlicke


February 3-4, 2009

Presentation Outline

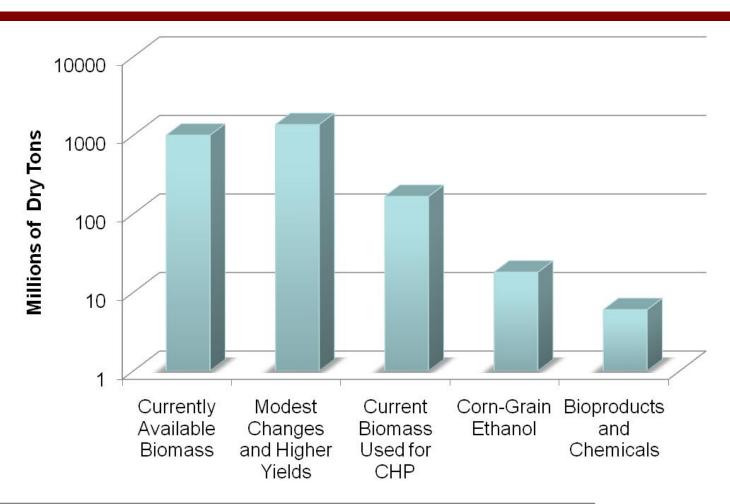
- Background
- Feasible biomass feedstocks
- Emerging
 Technologies
- Modular systems
- Advances in alternative distributed fuels and energy

Energy & Environmental Research Center (EERC)



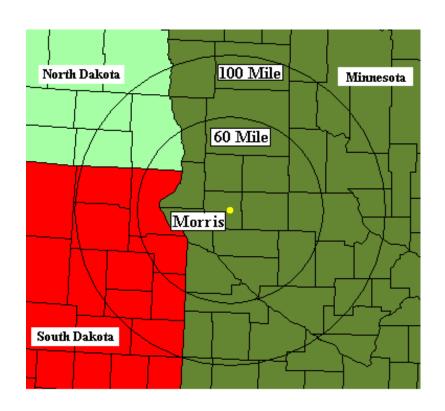
On the campus of the University of North Dakota in Grand Forks, North Dakota

Renewable Energy and Fuels to Replace, in Part, Fossil Sources



Feasible Biomass Feedstocks

Projected Biomass Availability in the United States

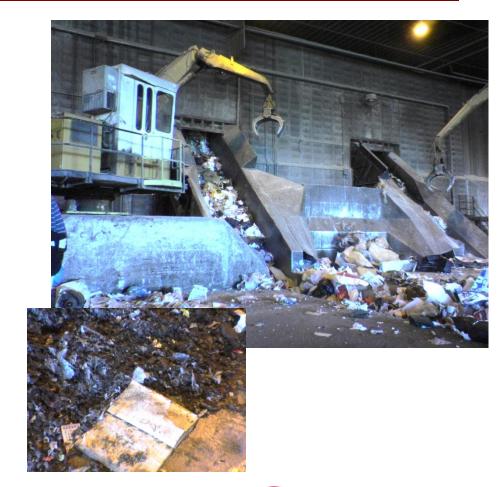


U.S. Department of Energy. 2006. *Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda*, DOE/SC-0095, (www. Doegenomestolife.org/biofuels/).

Biomass Resource Assessment

- Determine biomass feedstock types
- Quantify biomass within base confines and surrounding community
- Typical scenario for small Midwestern town
 - Theoretical = 15 M tons/yr
 - Actual = 677,000 tons/yr
 - Contractual = 45,000 tons/yr
 - For this case, needed 7000 tons/yr of various types

Feasible Biomass Feedstocks for Military Bases


- Feasible on-site
 - Municipal solid waste (MSW)
 - Also refuse-derived fuel
 - Acidified biosolids
 - Wood residues
 - Waste oils
- Agricultural residues
- Energy crops: grasses, hybrid trees, and algae

Municipal Solid Waste

- Food wastes and garbage
- Paper materials
- Textiles
- Extensive wood materials
- Various liquids
- Recycled: glass and metal, batteries, etc.

Wood Residues

- Forest thinnings
- Municipal residues
- Manufacturing residues
- Pulp and paper materials
- Sawdust, demolition wood, crates, pellets, and railroad ties

Agricultural Residues

- Straws: rice, wheat, flax straw, alfalfa
- Potato/sugar beet and other residues
- Corn stover
- Sugarcane bagasse
- Nutshells, husks, hulls, pits
- Grape pumice (grape pumice: stems, skins, and seeds left over from pressing the grapes)
- Animal manures

Energy Crops

- Hybrid willows and poplars
- Switchgrass or mixed prairie grass
- Algae

Emerging Technologies

Biomass to Biofuels Technologies

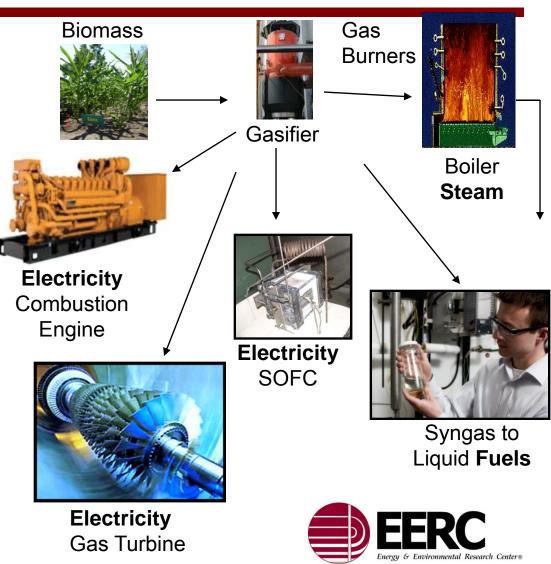
- Emerging technologies
 - 1. Thermal heat and catalysts to gasify (very little O₂) or pyrolyze (some O₂) biomass to a syngas or bio-oil; subsequent conversion of crop oil, syngas, or bio-oil to ethanol, butanol, methanol, FT liquids, JP-8, or other high-value chemicals.
 - 2. Fermentation –
 pretreatment of dilute or
 concentrated acid hydrolysis
 or various enzymatic and
 physical (i.e., steam)
 pretreatments.

Needed Fuels on Military Bases or Base Camps

Estimates

- Fuel usage varies widely :
 - JP-8: 10–15,000,000 gallons/yr
 - Gasoline: 1–2,000,000 gallons/yr
 - No. 2 diesel: 2–4,000,000 gallons/yr
 - No. 1 diesel: 1–2,000,000 gallons/yr
- DOE Models
 - 2000 tons per day cellulosic biomass
 - 50–100 million gallons per year of biofuel

Modular Systems


Modular Gasifier Systems

- Use entire hydrocarbon structure (biomass, MSW, etc.)
- Match for biomass availability
- Integrated base-loaded energy and heat
- Lower operating cost
- No off-the-shelf small boilers
- Remote systems
- More tolerant of contaminants
- Low water consumption
- No pressure boiler parts or training

Distributed or Modular Gasifier Applications

- Boiler add-on to save solid fuel maintenance or offset natural gas
- Other natural gas offsets such as grain drying
- Power generation
- Potential syngas products via catalysis and condensation

Status of Modular or Distributed Gasifier Systems

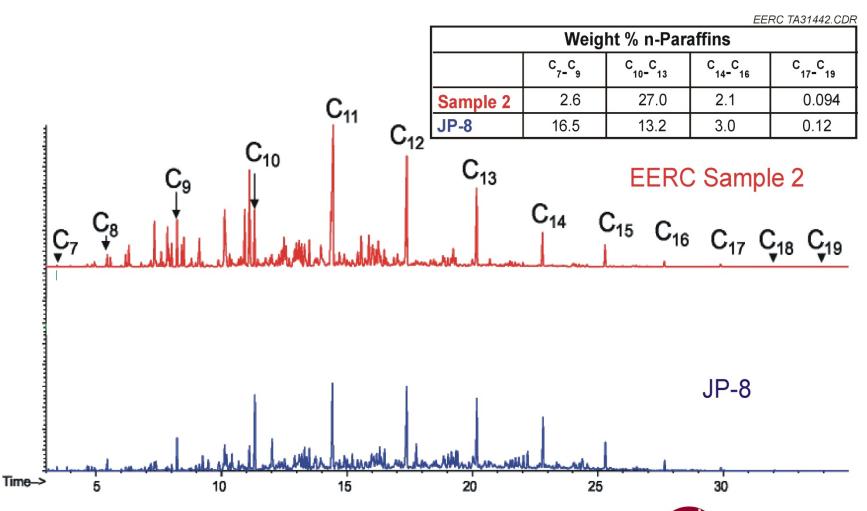
- Maturity: demonstration systems in the field now
- Barriers: reliability of resource, fuel handling, tar disposal or reuse, little experience for MSW or biosolids, no current "turnkey" system to model.
- Status of R&D to overcome barriers
 - The EERC has three 100-kW systems (electrical) in the field, gaining experience.
 - Need lower capital and increased simple automation.
 - More testing being done on biomass varieties.

Advances in Alternative Distributed Fuels and Energy

Advanced Biofuels

- Renewable fuels standard (RFS):
 - 36 billion gallons in 2022
 - 21 billion gallons needs to be of advanced biofuels
- U.S. biofuel production:
 - 450 million gallons of biodiesel (1/1/08–9/30/08)
 - 11 billion gallons of ethanol
- Biodiesel and ethanol are not considered advanced biofuels under the RFS.
- Very limited quantities of advanced biofuels are generated.

Renewable Jet and Diesel Fuels


- The U.S. Department of Defense aims to acquire 325 million gallons of synthetic JP-8 by 2016.
- Advanced biofuels consisting of renewable jet and diesel may be achievable at military bases.
- The commercial aviation market consumes 19 billion gallons of jet fuel per year. Interested in renewable fuels but not at a premium price.

EERC Renewable JP-8 vs. Petroleum JP-8

Specification Test	EERC JP-8	JP-8 Avg.	JP-8 Spec
Aromatics, vol%	19.8	17.9	≤25.0
Olefins, vol%	1.9	8.0	≤5.0?
Specific Gravity	0.805	0.803	0.775–0.840
Flash Point, °C	49	49	≥38
Freeze Point, °C	-52	-51.5	≤-47
Heat of Combustion, MJ/kg	42.9	43.2	≥42.8

Composition Comparison – EERC JP-8 vs. Petroleum JP-8

Status of Renewable Biofuels

- Maturity: 1 year for niche DG; 2-5 years for refinery biofuels production; 5+ years for smaller military sites.
- Barriers: feedstock sustainability and quality; capital costs; and market prices.
- Status of R&D to overcome barriers
 - The EERC has developed 100% bio-derived JP-8 specification-compliant hydrocarbon fuel.
 - 100% bio-derived synthetic paraffinic kerosene (SPK) specification-compliant hydrocarbon fuel.
 - Next step is large-scale pilot production.
 - Renewable jet and diesel blends require testing.

So What is Down the Road?

- Biomass feedstocks and sustainability
- Small distributed energy systems
- Advanced biofuels

Conclusions

- Biomass feedstocks, such as MSW, waste oils, wood residues, and local agricultural residues may provide a source, but probably not sustainable beyond 20%–30% of energy needs.
- Modular or small distributed energy systems are available in demonstration-limited commercial capacity but still need fine-tuning for varieties of biomass.
- Advanced biofuel production from local biomass sources is possible, but smaller bases will have high costs.

Contact Information

Chris J. Zygarlicke

Deputy Associate Director for Research
Energy & Environmental Research Center
University of North Dakota
czygarlicke@undeerc.org
(701) 777-5123
www.undeerc.org

